Tuesday, August 14, 2012

Transformation between datum’s in JavaScript – Part 2



1.     Introduction


In part 1 I explained the software architecture used for doing transformations between two different coordinates systems. In this document I will show you how in JavaScript you can develop the different functions (conversions and translations) needed for the  transformations. All the functions showed here are  not related to ArcGis , so you can use them on all situations when You need to convert local coordinates.

The transformation that will be implemented here is those between the WGS 84 geographic coordinates systems and the Lambert 72 projected coordinates systems.  As you already seen in part 1, the transformation happens through different steps. Some of these steps can be used in the transformations of other coordinates systems than  Lambert 72. However some of the functions used are only valid for the Lambert 72 projected coordinates systems.

When writing a transformation yourself, you will need some form of unit testing. This will only partial  covered here, but in the document OGP Publication 373-7 there are test values that can be used with simple function calls. It is important of doing unit tests on each different function before a complete integration can be done of the different steps. An error on one of the steps results in inaccurate coordinates and makes it difficult to debug a wrong transformation.

2.     Software algorithm outlined


Transformation between WGS 84 geographic coordinates system and Lambert 72 projected coordinates systems  consist of 4 steps to be executed.  Two types of coordinates are involved in the transformation, latitude , longitude expressed in degrees  (radians)  and x, y, z coordinates expressed in meters.

To support different conversions and translations,  two tables of JSON objects are used. One table defines the ellipsoid parameters and another table defines the translation parameters, mainly the Helmert 7 parameters.

Below is an example of some values in  the tables.

// ellipse parameters
CoordTransform.ellipse = {
  GRS80:     {
            a: 6378137,
            b: 6356752.3141,
           f: 1 / 298.2572215381486,
           e: 0.08181919111988833,
           e2: 0.006694380035512838
    },
  Intl1924: {
           a: 6378388.000,
           b: 6356911.946,
           f: 1 / 296.9999982305938,
           e: 0.0819918902228546,
          e2: 0.006722670062316669
   },
  Agd66:     {
          a: 6378160.0,
          b: 6356774.719,
          f: 1 / 298.25,
          e: 0.08182018036905428,
          e2: 0.006694541915624534
   },
  WGS84:     {
          a: 6378137,
          b: 6356752.3142,
          f: 1 / 298.2572229328697,
          e: 0.08181919092890624,
          e2: 0.006694380004260827
    }
 };

 // Transformation parameters (Helmert + Conic Conformal SP2 (Belgium)
 CoordTransform.datumTransform = {
       toLambert72: {
                                   tx: 106.868628, ty: -52.297783, tz: 103.723893,
                    rx: -0.33657, ry: 0.456955, rz: -1.842183,
                    s: -1.2747,
                    latF: 1.57079633,
                    lngF: 0.07604294,
                    lat1Par: 0.86975574,
                    lat2Par: 0.89302680,
                    eastF: 150000.01256,
                    northF: 5400088.4378
       },
       fromLambert72: {
                                   tx: -106.868628, ty: 52.297783, tz: -103.723893,
                    rx: 0.33657, ry: -0.456955, rz: 1.842183,
                    s: -1.2747,
                    latF: 1.57079633,
                    lngF: 0.07604294,
                    lat1Par: 0.86975574,
                    lat2Par: 0.89302680,
                    eastF: 150000.01256,
                    northF: 5400088.4378
       },
            toWGS72: {
                        tx: 0, ty: 0, tz: 4.5,
              rx: 0, ry: 0, rz: 0.554,
              s: 0.219
       },
       toAGD66: {
                       tx: -134, ty: -48, tz: 149,
             rx: 0, ry: 0, rz: 0,
             s: 1.0
       },
       fromAGD66: {
                       tx: 134, ty: 48, tz: -149,
             rx: 0, ry: 0, rz: 0,
             s: 1.0
       }
}

To simplify the functions of translation using the Helmert 7 parameters, two entries in the table are used, having only a difference in sign.

3.     Functions used in the transformation process


This section gives the different functions that are required in doing transformation between coordinate systems.  Not all of these functions are generic for all transformations but it gives an idea how to create specific transformations. Some functions depends on the local coordinates system involved.

3.1 Geographic coordinates to geocentric coordinates transformation


This method will convert the WGS 84 geographic coordinates into x, y, z geocentric coordinates. The method requires as input a point expressed in latitude ,longitude and height together with the ellipsoid.  The method returns the geocentric coordinates x, y, y expressed in meters. This method is generic for all ellipsoid.

function geographic2Geocentric(lat, lon, h, e) {
/// <summary>
/// Transformation of geographic x,y coordinates to geocentric coordinates
/// </summary>
/// <param name="lat">lat source</param>
/// <param name="lon">lon source</param>
/// <param name="h">hight</param>
/// <param name="e">eclipsoide parameters</param>
/// <returns type="">x,y geocentric coordinates</returns>
  var a = e.a, b = e.b, f = e.f;
  var sinPhi = Math.sin(lat);
  var cosPhi = Math.cos(lat);
  var sinLambda = Math.sin(lon);
  var cosLambda = Math.cos(lon);
  var H = h;  // standard hight
  var eSq = (a * a - b * b) / (a * a);
  var nu = a / Math.sqrt(1 - eSq * sinPhi * sinPhi);
  var x1 = (nu + H) * cosPhi * cosLambda;
  var y1 = (nu + H) * cosPhi * sinLambda;
  var z1 = ((1 - eSq) * nu + H) * sinPhi;
  return { x: x1, y: y1, z: z1 }
}

3.2 Geocentric transformation


In the figure you can see the different Helmert 7 parameters consisting of the delta of the origin of the ellipsoid , angle of rotation of the axes and a scale factor.

In the case of WGS 84 geographic coordinates system to Lambert 72 projected coordinates systems I need the Helmert 7 parameter translation. For other geocentric transformations it is possible you will need the Molodensky-Badekas 10 parameter translation.  Here I will illustrate the Helmert 7 parameter translation. This translation is generic for all transformation that requires  Helmert 7.  The Molodensky-Badekas 10 parameter translation is similar as the Helmert 7, adding some offset based on the extra three parameters.

The Helmert 7 parameter translation is mainly a matrix multiplication. Input are the geocentric coordinates x, y, z and the transformation parameter defined in the supporting table.

function helmertTransform(point, t) {

/// <summary>
/// Helmert -7 parameter transformations between two elipsoides
/// </summary>
/// <param name="point">x,y coordinates of the source</param>
/// <param name="t">transformation with the 7 parameters</param>
/// <returns type="">x,y coordinates</returns>
  var tx = t.tx, ty = t.ty, tz = t.tz;
  var rx = (t.rx / 3600).toRad();     // normalise seconds to radians
  var ry = (t.ry / 3600).toRad();
  var rz = (t.rz / 3600).toRad();
  var s1 = (t.s / 1e6);          // normalise ppm to (s+1)
  // apply transform
  var x2 = tx + (point.x - point.y * rz + point.z * ry) + s1 * point.x;
  var y2 = ty + (point.y + point.x * rz - point.z * rx) + s1 * point.y;
  var z2 = tz + (point.z - point.x * ry + point.y * rx) + s1 * point.z;
  return { x: x2, y: y2, z: z2 }
}

3.3 Geocentric coordinates to geographic coordinates


This function is needed to transfer geocentric coordinates back to the geographic coordinates. Geocentric coordinates cannot been used in displayed on a map, so minimal this transformation is required for using the result after a transformation.  The function required as input geocentric coordinates x, y, z and the ellipsoid parameters described earlier. The result of the function is a location expressed in latitude, longitude and height. This Is not a simple transformation but an iterating formula based on

function geocentric2Geographic(point, e) {

/// <summary>
/// Transformation of geocentric coordinates to geographic coordinates
/// </summary>
/// <param name="point">x,y,z geocentric coordinates</param>
/// <param name="e">eclipsoid parameters</param>
/// <returns type="">geographic coordinates latitude,longitude,height</returns>
  var a = e.a, b = e.b, f = e.f;
  var precision = 2 / a; 
  eSq = (a * a - b * b) / (a * a);
  var p = Math.sqrt(point.x * point.x + point.y * point.y);
  var lat2 = Math.atan2(point.z, p * (1 - eSq)), phiP = 2 * Math.PI;
  while (Math.abs(lat2 - phiP) > precision) {
    nu = a / Math.sqrt(1 - eSq * Math.sin(lat2) * Math.sin(lat2));
    phiP = lat2;
    lat2 = Math.atan2(point.z + eSq * nu * Math.sin(lat2), p);
  }
  var lng2 = Math.atan2(point.y, point.x);
  H = p / Math.cos(lat2) - nu;
  // h = X sec λ sec ϕν
  var eta = eSq / (1 - eSq);
  b = a * (1 - f);
  p = Math.sqrt(point.x * point.x + point.y * point.y);
  var q = Math.atan2(point.z * a, p * b);
  var latSimple =
     Math.atan2(point.z + eta * b * Math.sin(q) * Math.sin(q) * Math.sin(q),
                p - eSq * a * Math.cos(q) * Math.cos(q) * Math.cos(q));
  return { lng: lng2, lat: lat2, h: H };
}
 

3.4 Lambert Conic Conformal  two standard parallel (2SP) (Belgium)


In case of Lambert 72 projected coordinates system I need a conversion of geographic 3D coordinates into 2D projected coordinates based on a conic conformal transformation. When using other projected coordinates system you will need to verify the document OGP Publication 373-7 to select the formula to be applied.  The function is based on the more generic Lambert Conic Conformal SP2 with a correction added for Belgium.

function conicConformalSP2(pointLatLng, e, t) {

/// <summary>
/// Conic Conformal SP2 transformation of geographic coordinates to Lambert 72 x,y
/// with correction for Belgium
/// Is only valid in case of Lambert 72 datum
/// </summary>
/// <param name="pointLatLng">Lambert 72 geographic coordinates</param>
/// <param name="e">Eclipsoid parameters for the datum</param>
/// <param name="t">Translation object containing the parameters</param>
/// <returns type="">x,y parameters of the projection</returns>
// m = [cosϕ/(1 – e²sin²ϕ)] 0.5
  var m1 = Math.cos(t.lat1Par) / Math.sqrt((1 - e.e2 * Math.sin(t.lat1Par) * Math.sin(t.lat1Par)));
  var m2 = Math.cos(t.lat2Par) / Math.sqrt((1 - e.e2 * Math.sin(t.lat2Par) * Math.sin(t.lat2Par)));
  // t = tan(p /4 –  ϕ/2)/[(1 – e sinϕ )/(1 + e sinϕ )]e/2
  var t1 = Math.tan(Math.PI / 4 - t.lat1Par / 2) / Math.pow((1 - e.e * Math.sin(t.lat1Par)) / (1 + e.e * Math.sin(t.lat1Par)), e.e / 2);
  var t2 = Math.tan(Math.PI / 4 - t.lat2Par / 2) / Math.pow((1 - e.e * Math.sin(t.lat2Par)) / (1 + e.e * Math.sin(t.lat2Par)), e.e / 2);
  var tF = Math.tan(Math.PI / 4 - t.latF / 2) / Math.pow((1 - e.e * Math.sin(t.latF)) / (1 + e.e * Math.sin(t.latF)), e.e / 2);
  if (Math.abs(tF) < 0.0000001)
     tF = 0;
  var tPt = Math.tan(Math.PI / 4 - pointLatLng.lat / 2) / Math.pow((1 - e.e * Math.sin(pointLatLng.lat)) / (1 + e.e * Math.sin(pointLatLng.lat)), e.e / 2);
  // n = (ln m1 – ln m2)/(ln t1 – ln t2)
  var n = (Math.log(m1) - Math.log(m2)) / (Math.log(t1) - Math.log(t2));
  // F = m1/(nt1ⁿ)
  var F = m1 / (n * Math.pow(t1, n));
  // r = a F tn
  var r = e.a * F * Math.pow(tPt, n);
  var rF = 0;
  if (tF > 0)
    rF = e.a * F * Math.pow(tF, n);
  // θ = n(λλF)
  var tetra = n * (pointLatLng.lng - t.lngF);
  var a = 0.00014204313635987700;
  var x = t.eastF + r * Math.sin(tetra - a);
  var y = t.northF + rF - r * Math.cos(tetra - a);
  return { x: x, y: y };
}

3.5 Putting all the different steps together


In the previous sections the different steps needed for the transformation has been explained. Having developed these different steps, I now have the possibility to do the transformation into one function. As the name of the function suggests, this is only applicable between WGS 84 coordinates system and Lambert 72 projected coordinates system. Test done on the transformation results reveals an accuracy of 10 centimeters in x and y coordinates.

function convertWGS84toLambert72(pWGS84) {

/// <summary>
/// Convert lat/lon point in WGS84 to Lambert 72 x,y projection coordinates
/// </summary>
/// <param name="pWGS84"> WGS84 geographic lat/lon in degrees</param>
/// <returns type="x,y">Lambert 72 projection x,y </returns>
  var eWGS84 = CoordTransform.ellipse.GRS80;
  var eIntl1924 = CoordTransform.ellipse.Intl1924;
  var txToLambert72 = CoordTransform.datumTransform.toLambert72;
  var pLambert72h = convertEllipsoid(pWGS84, eWGS84, txToLambert72, eIntl1924);
  // Convert lat lng towards X, Y in lambert 72
  var pointXY = conicConformalSP2(pLambert72h, eIntl1924, txToLambert72);
  return pointXY;
}
 

 function convertEllipsoid(point, e1, t, e2) {

 /// <summary>
 /// Convert lat/lon from one ellipsoidal model to another
 /// </summary>
 /// <param name="point">lat/lng in source datum</param>
 /// <param name="e1">source ellipsoide parameters</param>
 /// <param name="t">Helmert 7 transform parameters</param>
 /// <param name="e2">target ellipsoide parameters</param>
 /// <returns type="">lat/lon in target reference datum</returns>
   // -- 1: convert polar to cartesian coordinates (using ellipse 1)
   var lat = point.lat * (Math.PI / 180.0);
   var lon = point.lng * (Math.PI / 180.0);
   var point1 = geographic2Geocentric(lat, lon, 100, e1);
   // -- 2: apply helmert transform using appropriate params
   var point2 = helmertTransform(point1, t)
   // -- 3: convert cartesian to polar coordinates (ellipse 2) browring algorithm
   var pointLatLng = geocentric2Geographic(point2, e2);
   return pointLatLng;
 }

4.     Creating another type of  transformation


In the previous section we put all the functions together to have our transformation from WGS84 coordinates system to Lambert 72 projected coordinates system. Now I will illustrate how we can use the same function to go the other way in the transformation. I will now show you how we can make a transformation of Lambert 72 projected system to the WGS 84 coordinate system. The following figure illustrate how this must be done.




From the different steps described here for doing the transformation, we only misses the code for doing the transformation ‘Projected 2D to 3D geographic’ for Lambert 72 coordinate system. We need to do a  transformation similar as described in section 6 but now the other way. In our famous document OGP Publication 373-7  you can find the formula needed for doing this.

4.1 Reverse  Lambert Conic Conformal 2SP (Belgium)


For each transformation geographic 2D coordinates to projected 3D coordinates there exist a reverse formula. Hereafter you can find the reverse formula for the Lambert Conic Conformal 2SP. For Belgium we needs also a slightly modified version to perform a correction.

function conicConformalSP2Reverse(pointxy, e, t) {

/// <summary>
/// Reverse Conic Conformal SP2 (Belgium) transformation of Lambert 72 x,y to
/// geographic coordinates 
/// </summary>
/// <param name="pointxy">x,y,h Lambert 72 projections</param>
/// <param name="e">Eclipsoid parameters for the datum</param>
/// <param name="t">Translation object containing the parameters</param>
/// <returns type="">Geographic coordinates lat/Lng</returns>
  var m1 = Math.cos(t.lat1Par) / Math.sqrt((1 - e.e2 * Math.sin(t.lat1Par) * Math.sin(t.lat1Par)));
  var m2 = Math.cos(t.lat2Par) / Math.sqrt((1 - e.e2 * Math.sin(t.lat2Par) * Math.sin(t.lat2Par)));
  // t = tan(p /4 –  ϕ/2)/[(1 – e sinϕ )/(1 + e sinϕ )]e/2
  var t1 = Math.tan(Math.PI / 4 - t.lat1Par / 2) / Math.pow((1 - e.e * Math.sin(t.lat1Par)) / (1 + e.e * Math.sin(t.lat1Par)), e.e / 2);
  var t2 = Math.tan(Math.PI / 4 - t.lat2Par / 2) / Math.pow((1 - e.e * Math.sin(t.lat2Par)) / (1 + e.e * Math.sin(t.lat2Par)), e.e / 2);
  var tF = Math.tan(Math.PI / 4 - t.latF / 2) / Math.pow((1 - e.e * Math.sin(t.latF)) / (1 + e.e * Math.sin(t.latF)), e.e / 2);
  if (Math.abs(tF) < 0.0000001)
      tF = 0;
   // n = (ln m1 – ln m2)/(ln t1 – ln t2)
   var n = (Math.log(m1) - Math.log(m2)) / (Math.log(t1) - Math.log(t2));
   // F = m1/(nt1ⁿ)
    var F = m1 / (n * Math.pow(t1, n));
    var rF = 0;
    if (tF > 0)
       rF = e.a * F * Math.pow(tF, n);
    var r = Math.sqrt(Math.pow((pointxy.x - t.eastF), 2) + Math.pow(rF - (pointxy.y - t.northF), 2));
    var tbis = Math.pow(r / (e.a * F), 1 / n);
    var tetra = Math.atan((pointxy.x - t.eastF) / (rF - (pointxy.y - t.northF)));
    var precision = 0.0000000001;
    // ϕ = π/2-2atan t'.
    var lat2 = Math.PI / 2 - 2 * Math.atan(tbis);
    var lat = 0;
    while (Math.abs(lat - lat2) > precision) {
      lat = lat2;
      lat2 = Math.PI / 2 - 2 * Math.atan(tbis * Math.pow((1 - e.e * Math.sin(lat)) / (1 + e.e * Math.sin(lat)), e.e / 2));
    }
    // λ = [(θ' + a)/n] + λF
    lng = (tetra + (29.2985 / 3600).toRad()) / n + t.lngF;
    lat2 = lat2 * 180 / Math.PI;
    lng = lng * 180 / Math.PI;
    return { lat: lat2, lng: lng, h: 100 }
  }

More details how these function is build can be found in OGP Publication 373-7

 4.2 Creating the full transformation


This is similar as the function described in section 7. The only difference is that we now has to add an initial transformation between projected coordinates and geographic coordinates.

function convertLambert72toWGS84(pLambert) {

/// <summary>
/// Convert x,y,h point in Lambert 72 projection to WGS84 geographic coordinates
/// </summary>
/// <param name="pLambert">x,y Lambert projection</param>
/// <returns type="">WGS84 geographic Lat,Lng in degrees</returns>
  var eWGS84 = CoordTransform.ellipse.GRS80;
  var eIntl1924 = CoordTransform.ellipse.Intl1924;
  var txFromLambert72 = CoordTransform.datumTransform.fromLambert72;
  var pointLatLng = conicConformalSP2Reverse(pLambert, eIntl1924, txFromLambert72);
  var pLatLng = convertEllipsoid(pointLatLng, eIntl1924, txFromLambert72, eWGS84);
  pLatLng.lat = pLatLng.lat * 180 / Math.PI;
  pLatLng.lng = pLatLng.lng * 180 / Math.PI;
  return pLatLng;
}

5.     Conclusion


This illustrate how both transformation can be achieved with the same functions. In this way an important part of the functions are reusable across different transformations. In the JavaScript implementations of the formula’s no care was done to optimize the code but rather make it readable towards the formulas found in OGP Publication 373-7.

6.     Testing


An important part for writing your own transformation between two coordinates systems is creating test procedures. Before you can write test procedures, you will need having test data. Important data can be found in the document OGP Publication 373-7.
Sometimes you can find  sample data on the internet. In Belgium we have the desktop utility cConvert of NGI (Nationaal Geografisch Instituut) that make it possible to convert  coordinates between WGS 84 and different Belgium projected coordinates systems.
Here are some examples of writing test procedure. The conversion of geographic to geocentric coordinates can be tested using a bidirectional conversion :

var pointLatLngInit = {
     lat: 0.939151102,
     lng: 0.037167659,
     h: 100
};

var pointXY = geographic2Geocentric(pointLatLngInit.lat, pointLatLngInit.lng,
       pointLatLngInit.h, CoordTransform.ellipse.GRS80);
//      Geodetic coordinates x,y,z after geographic2Geocentric
//          3771793.968, 140253.342, 5124304.349
pointLatLng = geocentric2Geographic(pointXY, CoordTransform.ellipse.GRS80);
var dif = Math.abs(pointLatLng.lat - pointLatLngInit.lat) +
          Math.abs(pointLatLng.lng - pointLatLngInit.lng);
//      Must be 0.939151102, 0.037167659
if (dif > 0.00001)
    alert("Error occurred during the geographic - geocentric transformation");

For testing the Helmet 7 parameter translation you can test it with given data as a first test. This is what is shown next.

var point = { x: 3657660.66, y: 255768.55, z: 5201382.11 };
var pointCentric = helmertTransform(point, CoordTransform.datumTransform.toWGS72);
//          XT = 3657660.78 m
//          YT = 255778.43 m
//          ZT = 5201387.75 m

However a more extensive can be done using a bidirectional tests doing a conversion between two geographic coordinates systems.  This is illustrated in the code hereafter.

// WGS84 : 50.679013094°   5.808676779°
// WGS84 - Lambert 72 transformation
var pointLatLngInit = { lat: 50.679013094, lng: 5.808676779, h: 100 };
pointLatLng2 = convertEllipsoid(pointLatLngInit, CoordTransform.ellipse.GRS80,        CoordTransform.datumTransform.toLambert72, CoordTransform.ellipse.Intl1924);
pointLatLng2.lat = pointLatLng2.lat * 180 / Math.PI;
pointLatLng2.lng = pointLatLng2.lng * 180 / Math.PI;
// Lambert 72 : 50.679571311°  5.807373188°
pointLatLng = convertEllipsoid(pointLatLng2, CoordTransform.ellipse.Intl1924,
       CoordTransform.datumTransform.fromLambert72, CoordTransform.ellipse.GRS80);
//
pointLatLng.lat = pointLatLng.lat * 180 / Math.PI;
pointLatLng.lng = pointLatLng.lng * 180 / Math.PI;
// WGS84 : 50.679013094°   5.808676779°
var dif = Math.abs(pointLatLng.lat - pointLatLngInit.lat) +
       Math.abs(pointLatLng.lng - pointLatLngInit.lng);
if (dif > 0.00001)
   alert("Error occurred during the geographic - geographic transformation");

For some geographic transformations you can use the Abridged Molodensky formula. This is a transformation based on only three parameters , DX, DY, DZ.

// Abridged Molodensky transformations

var pointLatLngInit = { lat: -37.8, lng: 144.96666667, h: 50 };
var pointLatLng2 =
       molodenskyTransform(pointLatLngInit, CoordTransform.datumTransform.toAGD66,
       CoordTransform.ellipse.Agd66, CoordTransform.ellipse.GRS80);
//   Results -37.79848036    144.96798611   46.378
//           -0.659707935       2.530168668
pointLatLng2.lat = pointLatLng2.lat * 180 / Math.PI;
pointLatLng2.lng = pointLatLng2.lng * 180 / Math.PI;
var pointLatLng =
       molodenskyTransform(pointLatLng2, CoordTransform.datumTransform.fromAGD66,
       CoordTransform.ellipse.GRS80, CoordTransform.ellipse.Agd66);
pointLatLng.lat = pointLatLng.lat * 180 / Math.PI;
pointLatLng.lng = pointLatLng.lng * 180 / Math.PI;
var dif = Math.abs(pointLatLng.lat - pointLatLngInit.lat) +
       Math.abs(pointLatLng.lng - pointLatLngInit.lng);
if (dif > 0.000001)
  alert("Error occurred during the geographic-geographic molodensky transformation");

Above test procedure is based on a transformation between geographic coordinates system of Great Britain and WGS 84. As in a previous test procedure, it can also been used in bidirectional calls.

For doing this test You need the Abridge Molodensky  formula function implementation. Only three parameters are required for this transformation.
function molodenskyTransform(point, t, eFrom, eTo) {

/// <summary>
/// Molodensky transformation between geografic coordinates of two eclipsoides
/// </summary>
/// <param name="point">lat,lng of source</param>
/// <param name="t">transformation between the eclipsoides</param>
/// <param name="eFrom">eclipsoide parameters of source</param>
/// <param name="eTo">eclipsoide parameters of destination</param>
/// <returns type="">lat,lng transformed</returns>
  var lat = point.lat * Math.PI / 180;
  var lng = point.lng * Math.PI / 180;
  var da = eTo.a - eFrom.a;
  var df = eTo.f - eFrom.f;
  var sinLat = Math.sin(lat);
  var cosLat = Math.cos(lat);
  var sinLng = Math.sin(lng);
  var cosLng = Math.cos(lng);
  var sin2Lat = sinLat * sinLat;
  var esqr = eFrom.f * (2 - eFrom.f);
  var nu = eFrom.a / Math.sqrt(1 - esqr * sin2Lat);
  var ro = eFrom.a * (1.0 - esqr) / Math.pow((1.0 - esqr * sin2Lat), 1.5);
  var dlat = (1 / (ro + point.h)) * (-t.tx * sinLat * cosLng - t.ty * sinLat * sinLng
       + t.tz * cosLat + da * (nu * esqr * sinLat * cosLat) / eFrom.a
       + sinLat * cosLat * df * ((ro / (1 - eFrom.f)) + nu * (1 - eFrom.f)));
  var dlng = (-t.tx * sinLng + t.ty * cosLng) / ((nu + point.h) * cosLat);
  var dh = t.tx * cosLat * cosLng + t.ty * cosLat * sinLng + t.tz * sinLat - da +
       sin2Lat * (eFrom.f * da + eFrom.a * df);
  return { lat: lat + dlat, lng: lng + dlng, h: point.h + dh };
}

7.     Possible extensions


In the transformation function illustrated here, no action is implemented to handle spatial distortion. Although you can find on the documents of the bibliography in part 1 some formula’s that will handle this distortion like Tissot, it is possible that at country level specific translation is put in place. This kind of correction is only needed if you need an accuracy of centimeters.

Example of such a situation is Belgium where NGI has defined regions, which each region has its own Helmet 7 parameters.


Some examples.
zone
dx
dy
dz 
rx
ry
rz
s
zone01 
170,194330
-23,319088
98,006431
-0,132903
1,272427
2,691469
0,999995501
zone02 
154,854804
-24,618147
65,952209
0,006332
1,547517
2,851635
1,000000934
zone03 
168,604000
-19,720000
59,218000
-0,036000
2,036000
3,046000
1,000000373
zone04 
153,029709
-18,859783
84,124233
0,022832
1,137474
3,146639
0,999998870
zone05 
158,041429
-15,912627
73,921469
-0,094578
1,470761
3,161524
0,999999603
zone06 
135,404412
-13,372664
82,710991
-0,146833
0,722672
3,241832
1,000000767
zone07 
148,388053
0,104964
86,472784
-0,256388
0,983121
3,778806
0,999998948
zone08 
158,411443
-15,389660
67,316637
0,206397
1,632895
3,568474
1,000000369
zone09 
168,285000
-18,249000
63,917000
0,027082
1,936736
3,194554
0,999999823
zone10 
155,950000
-19,541000
71,852000
0,031006
1,462467
3,136918
1,000000081